Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient …

Y Zhang, A Harada, H Bluethmann, JB Wang, S Nakao… - 1995 - ashpublications.org
Y Zhang, A Harada, H Bluethmann, JB Wang, S Nakao, N Mukaida, K Matsushima
1995ashpublications.org
Murine bone marrow cells with lineage phenotypes (Lin)-Sca-1+ c-kit+ and Lin-Sca-1-c-kit+
cells represent primitive hematopoietic stem cells (HSCs) and committed hematopoietic
progenitor cells, respectively. The number of Lin-Sca-1+ c-kit+ HSCs in bone marrow was
significantly increased in tumor necrosis factor (TNF) receptor p55-deficient (TNF-R55–1-)
mice compared with the TNF-R55+/+ wild-type mice without a marked change in bone
marrow cellularity. In both the methylcellulose culture and a single-cell proliferation assay …
Abstract
Murine bone marrow cells with lineage phenotypes (Lin)-Sca-1+c-kit+ and Lin-Sca-1-c-kit+ cells represent primitive hematopoietic stem cells (HSCs) and committed hematopoietic progenitor cells, respectively. The number of Lin-Sca-1+c-kit+ HSCs in bone marrow was significantly increased in tumor necrosis factor (TNF) receptor p55-deficient (TNF-R55–1-) mice compared with the TNF-R55+/+ wild-type mice without a marked change in bone marrow cellularity. In both the methylcellulose culture and a single-cell proliferation assay, mouse TNF alpha (mTNF alpha) inhibited in vitro the proliferation of wild-type mouse-derived Lin-Sca-1+c-kit+ cells in response to a combination of multiple growth factors. The same is true for that of Lin-Sca-1+c-kit+ cells stimulated with granulocyte colony-stimulating factor (G-CSF) plus stem cell factor (SCF). Moreover, mTNF alpha significantly arrested the entry into S-phase from G0/G1 phase of Lin-Sca-1+c-kit+ cells stimulated with multiple growth factors and Lin-Sca-1-c-kit+ cells stimulated with G-CSF plus SCF. In contrast, mTNF alpha failed to affect the growth and cell cycle progression of Lin-Sca-1+c-kit+ cells and Lin-Sca-1-c-kit+ cells that were obtained from TNF-R55-deficient mice. These data suggest that TNF may be an important physiologic regulator of hematopoiesis and that TNF-R55 may be essentially involved in TNF-mediated inhibition of the growth of both primitive stem and more committed progenitor cells.
ashpublications.org